
7788 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Pystin: Enabling Secure LBS in Smart Cities With
Privacy-Preserving Top-k Spatial–Textual Query

Divya Negi, Suprio Ray , Member, IEEE, and Rongxing Lu , Senior Member, IEEE

Abstract—The convergence of technologies like Cloud com-
puting, mobile, and smart phone technologies has led to the
rapid development of location-based services (LBS) in smart
cities. For flexibility and cost savings, there is a recent trend
to migrate LBS to the Cloud, however it poses a serious threat
to the user privacy. In this paper, we present a new privacy
preserving top-k spatio-textual keyword (TkSK) query scheme,
called privacy-preserving spatio-textual index (Pystin), which is
performed over outsourced Cloud and can enable secure LBS in
smart cities. In Pystin, a query user’s accurate location is pro-
tected by the combination of Boneh–Goh–Nissim homomorphic
encryption and hash bucket techniques, and the privacy of tex-
tual information are persevered by a one-way hash function. In
addition, a quad-tree-based spatio-textual indexing is integrated
into Pystin to further reduce the query latency. Detailed secu-
rity analyzes show that the proposed Pystin scheme is indeed a
privacy-preserving TkSK query scheme. Furthermore, extensive
experiments are conducted, and results confirm the scalability,
efficiency properties of our proposed Pystin scheme.

Index Terms—Location-based services (LBS),
privacy-preserving, smart city, top-k spatial–textual query.

I. INTRODUCTION

AS THE popularity and affordability of smart-phones, and
the advances in mobile technologies and user friendly

applications have led to the rapid growth in location-based
services (LBS) in smart cities. Applications, such as Apple
Maps, Google Maps, social networks, location-based gaming,
targeted advertising, and points of interest search, produce
huge volumes of data each day. For example, as of 2017,
there are 1.32 billion daily active users (DAUs) on Facebook
that post 4.3 billion messages everyday on average. Similarly,
328 million DAUs on Twitter send 500 million tweets a
day [1], [2]. The rapidly rising data volume has the potential to
help generate deep insights through analytics to drive critical
decision making for businesses and other organizations.

Manuscript received September 11, 2018; revised January 3, 2019; accepted
February 18, 2019. Date of publication March 1, 2019; date of current version
October 8, 2019. The work of S. Ray and R. Lu was supported in part by
the Natural Sciences and Engineering Research Council of Canada Discovery
Grants and in part by New Brunswick Innovation Foundation (NBIF) Start-Up
Grants. (Corresponding author: Suprio Ray.)

D. Negri was with the Faculty of Computer Science, University of
New Brunswick, Fredericton, NB E3B 5A3, Canada. She is now with
Morgan Stanley Canada Limited, Montreal, QC H3C 3S4, Canada (e-mail:
dnegi@unb.ca).

S. Ray and R. Lu are with the Faculty of Computer Science, University of
New Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: sray@unb.ca;
rlu1@unb.ca).

Digital Object Identifier 10.1109/JIOT.2019.2902483

Big data holds great promise for the betterment of our smart
cities. However, big data also exposes users to great privacy
and security risks. Due to its “pay for what you use” model,
the Cloud is very attractive to enterprises financially, and more
and more companies are outsourcing their data onto the Cloud.
This, however, is fraught with serious privacy concerns. Any
data that is stored as plaintext can be misused by either a
malicious third party, or by a Cloud service provider which
is considered as honest-but-curious. Here, honest-but-curious
means that a Cloud server stores and processes data honestly,
but would like to know more about the data. In addition,
the privacy of users who submit queries to a Cloud hosted
system could be compromised by their search keywords. Even
de-identification technique, through anonymizing data for the
purpose of query processing, may still not be sufficient to
retain the privacy of users. For instance, the anonymized search
logs released by AOL for academic purposes were used to
easily identify users by their searches [3]. Therefore, the impe-
tus to developing novel privacy-preserving query processing
techniques becomes stronger than ever before.

A top-k spatio-textual keyword (TkSK) query is one impor-
tant type of LBS queries, which retrieves a set of k objects
ranked by a ranking function according to their spatial and
textual relevance [4]. Consider for example, on a Friday night
you are looking for a “specialty restaurant serving Indian style
spicy curry close to your current location in a city that you first
visit.” In this case, the ranking function takes into account both
the textual relevance and the spatial proximity of the spatio-
textual objects from the query point. However, when users
submit this type of query, some sensitive information like loca-
tion and query patterns of users could be leaked, if not well
protected, these sensitive information could be further mis-
used by criminals to analyze users’ behavior and attack them.
Further, as more data owners tend to outsource their data to
the Cloud, it becomes crucial to consider privacy-preserving
TkSK (PTkSK) search in the context of outsourced Cloud,
which can help protect against possible privacy breaches and
unsolicited access.

Preserving privacy in Cloud comes at a price, and adding
a privacy feature will lead to the search latency considerably.
Given the importance of privacy-preserving LBS (PP-LBS),
a number of schemes have been proposed in past years.
However, most of them are concerned with designing privacy-
preserving schemes for either spatial or keyword queries, but
not both. For example, Yiu et al. [5] proposed the use of
symmetric encryption AES and complete transformation of
location space to secure the components of a TkSK query.

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0681-9685
https://orcid.org/0000-0001-5720-0941

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7789

Hu et al. [6] used R-tree-based index in conjunction with
a homomorphic encryption scheme called asymmetric scalar
product-preserving encryption with noise (ASPEN). However,
these approaches fail to address the challenges in secure
spatio-textual query processing. Therefore, how to design a
privacy-preserving top-k spatial–textual query scheme over
outsourced Cloud is of particular interest to enable secure LBS
in smart cities.

Aiming at addressing the above challenges, in this paper,
we propose a new scheme, called privacy-preserving spatio-
textual index (Pystin), for PTkSK queries over outsourced
Cloud. The proposed Pystin scheme employs Boneh–Goh–
Nissim (BGN) homomorphic encryption [7] and novel hash
bucket techniques to enable users to launch top-k LBS queries
in smart cities, while preserving users’ accurate location and
keywords privacy against the Cloud server. In addition, to
improve the performance, Pystin extends I3 [8], a quad-tree-
based spatio-textual indexing approach, which can provide
efficient spatial pruning and make Pystin update efficient for
spatial data [8], [9]. Specifically, the contributions of this paper
are threefold.

1) We propose Pystin, a privacy-preserving top-k spatial–
textual query over outsourced Cloud to enable secure
LBS in smart cities, where a query user’s accurate
location is protected by the combination of BGN homo-
morphic encryption [7] and hash bucket techniques, and
the privacy of textual information are persevered by a
one-way hash function.

2) We integrate the quad-tree in I3 as the spatio-textual
indexing [8] into Pystin, which improves the query
performance in Pystin.

3) We conduct extensive experiments against a Baseline
secure approach (without an index), and a nonsecure
spatio-textual index, to demonstrate the scalability, effi-
ciency, and security of our proposed Pystin scheme.

The remainder of this paper is organized as follows. In
Section II, we introduce our system model, security model,
and design goal. In Section III, we recall some preliminar-
ies. Then, in Section IV, we present our proposed Pystin
scheme, followed by security analysis and performance eval-
uation in Sections V and VI, respectively. In Section VII, we
discuss the related works. Finally, we draw our conclusions in
Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and identify our design goal.

A. System Model

In our system model, we consider a typical Cloud-based
top-k LBS query model, which includes a data owner, a Cloud
server, and end users, as shown in Fig. 1.

1) Data Owner: Data owner is an LBS provider who owns
a big data set D = {D1, D2, . . .}, where each document Di ∈ D

has the following format.

Fig. 1. System model of a top-k LBS query under consideration.

Since a Cloud server can provide powerful capabilities in
storing and processing data, we assume the data owner is will-
ing to outsource the big data set D = {D1, D2, . . .} to the
Cloud server for offering better LBS to end users.

2) Cloud Server: Cloud server is a powerful entity, which
stores the outsourced data D = {D1, D2, . . .} from the data
owner, and also processes LBS queries from the authorized
users. In order to improve the query efficiency, the Cloud
server builds the index on the data, and also utilizes some
data structures to organize the outsourced big data set D =
{D1, D2, . . .}.

3) End Users: End users are a set of authorized users. After
registering him/herself with the data owner, each end user
obtains a query key from the data owner. Later, he/she can
use the query key to send LBS queries such as “find the top
three spicy curry restaurants near me,” to the Cloud server.

B. Security Model

In our security model, we consider the data owner to be
trustable, while the Cloud server is semi-trusted, and follows
honest-but-curious model. That is, the Cloud server will follow
the protocol, but may be curious about the data owner’s big
data set D = {D1, D2, . . .} and the end user’s query privacy,
including query interests and accurate location information of
user. The end users will faithfully follow the protocol to launch
the top-k LBS query, and there is no collusion between any
end user and the Cloud server. In addition, we consider the fol-
lowing two assumptions: 1) we assume that there is a secure
channel of communication between the data owner and the
Cloud server over which the data owner outsources its data to
the Cloud server and 2) we assume that the data owner pro-
vides the authorized keys to the Cloud server and the end users
after performing authorization and access control measures.

Note that it is possible for an external attacker to launch
other active attacks on data integrity and availability in more
realistic scenarios. However, since we focus on efficient and
PP-LBS query, those active attacks are beyond the scope of
this paper and will be discussed in our future work.

C. Design Goal

Based on the above system model and security model, our
design goal is to propose a new efficient and PTkSK query to

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

7790 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 2. Example of spatial database.

enable secure LBS in smart cities. In particular, the following
two objectives should be achieved.

1) Our Proposed Scheme Should Be Privacy-Preserving:
In order to adapt to the honesty-but-curious model, the Cloud
server should not be able to read the contents and keywords in
each document Di ∈ D. In addition, the Cloud server should
not know the end user’s query interest and the accurate loca-
tion information. Note that, in order to enable the Cloud server
to dynamically organize the big data set D according to each
document Di’s location (xi, yi), we do not need to hide the
location (xi, yi) to the Cloud server. Nevertheless, we still
need to guarantee the Cloud server cannot know the accurate
location of end user.

2) Our Proposed Scheme Should Be Efficient: In order
to achieve the above privacy-preservation requirements, the
Cloud server has to pay for additional computational cost to
deal with the user’s LBS query. In our proposed scheme, we
aim to make the Cloud server’s query response much efficient.

III. PRELIMINARIES

In this section, we recall some preliminaries, including top-
k spatio-textual queries, some existing spatio-textual indexing
schemes, and BGN homomorphic encryption technique [7],
which will serve as the basis for our proposed Pystin scheme.

A. Top-k Spatio-Textual Keyword Query

Let D be a spatial database such that D = {D1, D2, . . .},
as shown in Fig. 2. Each object Di in D is defined as a
tuple (Di.loc, Di.doc). Here, Di.loc = (xi, yi) is the spatial
information, i.e., Di.loc.latitude = xi, Di.loc.longitude = yi,
and Di.doc is the textual description of the object containing
keywords ki1, ki2, ki3, . . ., i.e.,

Di.doc = {ki1, ki2, ki3, . . .}. (1)

A query Q is also defined as a tuple (Q.loc, Q.doc, k). Q.loc
is the query location (xj, yj), and Q.doc is the set of keywords
kj in the query Q, where

Q.doc = {k1, k2, k3, . . .} (2)

and k is the number of documents to be returned.
In the case of AND semantics, a document Di is a can-

didate only when it contains all the keywords in the query;
i.e., ∀kj ∈ Q.doc, kj ∈ Di.doc. In the case of OR seman-
tics, Di is a candidate if it contains at least one keyword;

i.e., ∃kj ∈ Q.doc, kj ∈ Di.doc. A ranking function [8] that
computes the relevance score of a spatial object Di and query
Q is defined as

Di.Scoretotal = αScoresp + (1− α)Scoretx (3)

where Scoresp is the spatial relevance score of a document
Di, Scoretx is the textual relevance score of Di with respect
to query Q, and the value of α ∈ [0, 1] determines the impor-
tance of spatial or textual relevance score in the overall score.
Concretely, Scoresp(Di.doc, Q.doc) is defined as follows [8]:

Scoresp(Di.doc, Q.doc) = 1− Eucdist(Di.loc, Q.loc)

distMAX
(4)

where Eucdist(Di.loc, Q.loc) is the Euclidean distance between
Di.loc and Q.loc, and distMAX is the maximum possible
Euclidean distance between any two points in the space under
consideration.

For Scoretx(Di.doc, Q.doc), we use a term frequency-inverse
document frequency (TF-IDF) [10] scheme to model the doc-
uments and query in a vector-space model [11]. Further, to
measure the similarity between Di and Q, we use cosine
similarity between the vectors representing the document
Di.doc and query Q.doc. As a result, Scoretx(Di.doc, Q.doc)
is computed as follows:

Scoretx(Di.doc, Q.doc)

=
∑

t∈Di.doc∩Q.doc tfidf (Di.doc.t, Di.doc)tfidf (Q.doc.t, Q.doc)
√
|Di.doc|∑

t=1
tfidf (Di.doc.t, Di.doc)2

√
|Q.doc|∑

t=1
tfidf (Q.doc.t, Q.doc)2

(5)

where t refers to a term (keyword) either in the document
Di.doc or the query Q.doc. Di.doc.t refers to a term in Di.doc
and Q.doc.t refers to a term in Q.doc. For a given term τ

and document doc, the TF-IDF weight, tfidf (τ, doc) is calcu-
lated as a product of term-frequency (tf) and inverse document
frequency (idf) as

tfidf (τ, doc) = tf (τ, doc)idf (τ, doc) (6)

where

tf (τ, doc) = f (τ, doc)

|doc| (7)

idf (τ, doc) = log
|D|

|{doc′ ∈ D|τ ∈ doc′}| . (8)

Further, |D| is the number of documents in D. f (τ, doc) is the
number of times term τ appears in a document doc and |doc|
is the number of terms document doc contains. |{doc′ ∈ D|t ∈
doc′}| is the number of documents in D in which the term τ

appears. Note, other variations of tf and idf formulation [12]
can be used as well.

B. Spatio-Textual Index

Inverted files are the most popular one for textual indexing,
and R-tree and its variations are also commonly used for spa-
tial indexing. Therefore, for spatio-textual indices, it is natural
for us to combine these two approaches. Most of the current
state-of-the-art hybrid indices follow this pattern. For example,

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7791

IR-tree [4] index combines R-trees and inverted files, and each
node in R-tree contains pointer to an inverted file containing
details of the objects. I3 index [8] incorporates inverted files
with quadtrees for efficient spatial pruning. We use I3 as basis
for our proposed index structure in our proposed scheme.

C. BGN Homomorphic Encryption

The BGN homomorphic encryption technique has been
widely studied in privacy preserving scenarios [7], and mainly
consists of three algorithms: 1) key generation; 2) encryp-
tion; and 3) decryption. Since BGN is built upon the bilinear
pairing with composite order, we first recall the properties of
bilinear pairing with composite order. Let p and q be two
large primes of the same length, i.e., the bit length |p| = |q|,
and N = pq. Two groups (G, GT) of composite order N are
called bilinear map with composite order if there exists a com-
putable mapping e : G × G → GT with the following three
properties [7].

1) Bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G
2

and a, b ∈ ZN where ZN ∈ {0, 1, 2, . . . , N − 1}.
2) Nondegeneracy: There exists g ∈ G such that e(g, g) is

with the order N in GT ; and
3) Computability: There exists an efficient algorithm to

compute e(g, h) ∈ GT for all (g, h) ∈ G.
Let g be a generator of G, then g = gq ∈ G can generate the

subgroup Gp = {g0, g1, . . . , gp−1} of order p, and g′ = gp ∈ G

can generate the subgroup Gq = {g′0, g′1, · · · , g′q−1} of order
q in G. The subgroup decision problem is assumed hard, and
we can use it to build the BGN homomorphic encryption [7].
Next, we briefly explain the three algorithms.

1) Key Generation: Given the security parameter κ , com-
posite bilinear parameters (N, g, G, GT , e) are generated by
CGen(κ), where N = pq and p, q are two κ-bit prime num-
bers, and g ∈ G is a generator of order n. Set h = gq, then h
is a random generator of the subgroup of G of order p. The
public key is pk = (N, G, GT , e, g, h), and the corresponding
private key is sk = p.

2) Encryption: We assume the message space consists of
integers in the set S = {0, 1, . . . , �} with �	 q. To encrypt
a message m ∈ S, we choose a random number r ∈ ZN , and
compute the ciphertext c = E(m, r) = gmhr ∈ G.

3) Decryption: Given the ciphertext c = E(m, r) = gmhr ∈
G, the corresponding message can be recovered by the private
key p. Observe that cp = (gmhr)p = (gp)m. Let ĝ = gp. To
recover m, it suffices to compute the discrete log of cp base ĝ.
Since 0 ≤ m ≤ �, the expected time is around O(

√
�) when

using the Pollard’s lambda method [13].
The BGN encryption has the following addition and multi-

plication homomorphic properties.
1) Addition in G: Given E(m1, r1) ∈ G and E(m2, r2) ∈ G,

we have E(m1, r1)·E(m2, r2) = E(m1+m2, r1+r2) ∈ G.
For simplicity, we omit the random items, and we have
E(m1) · E(m2) = E(m1 + m2).

2) Multiplication in G: Given E(m1) ∈ G and m2 ∈ S, we
have E(m1)

m2 = E(m1 · m2) ∈ G.

3) Multiplication From G to GT: Given E(m1), E(m2) ∈ G,
we have e(E(m1), E(m2)) = ET(m1 · m2) ∈ GT , where
ET(·) denotes a ciphertext in GT .

IV. OUR PROPOSED PYSTIN SCHEME

In this section, we present our Pystin scheme, which mainly
consists of five parts: 1) system initialization; 2) big data out-
sourcing; 3) index construction; 4) end user top-k LBS query
(PTkSKQ); and 5) Cloud server query response.

A. System Initialization

As the data owner is a trustable entity in our system model,
she bootstraps the whole system in the system initializa-
tion phase. Specifically, given the security parameter κ , the
data owner uses CGen(κ) to generate the bilinear parame-
ters (N, g, G, GT , e), where N = pq. Then, the data owner
sets the BGN public key pk = (N, G, GT , e, g, h) and the
private key sk = p, where h = gq. Further, the data owner
chooses a secure symmetric encryption algorithm Enc(.), e.g.,
AES, and a cryptographic hash function H(.), e.g., SHA-1,
and also chooses random numbers s, s1, s2, t ∈ ZN as secret
keys. Finally, the data owner keeps (p, s, s1, s2, t) secret, and
publishes pk = (N, G, GT , e, g, h), Enc(.), and H(.).

User Registration: When an end user registers him/herself
to the LBS services provided by the data owner, the data owner
will authenticate the user and authorize the access key AK =
(s, s1, gs2 , gs2

2) to the user, so that the latter can use the access
key to launch the LBS query to the Cloud server.

B. Big Data Outsourcing

As the Cloud server is honest-but-curious, before outsourc-
ing D = {D1, D2, . . .} to the Cloud server, the data owner
secures the documents and the interest keywords in D so that
the Cloud server can process the PP-LBS query. Concretely,
big data outsourcing includes two parts: 1) data sourcing and
2) hash bucket construction.

1) Data Outsourcing: The data owner first runs the follow-
ing steps for each document Di ∈ D before outsourcing.

Step 1: The data owner uses the secret key s1 to compute
EDi = Encs1(Di).

Step 2: The data owner then chooses a random number r4i ∈
ZN and uses the secret key s2 to compute C4i = gs2(s2+x2

i +y2
i) ·

hr4i , where (xi, yi) is the location of Di.
Step 3: For each keyword kij, the data owner uses the secret

key s to compute hkij = H(kij||s).
Step 4: The data owner formats the new form of Di as

follows.

After processing all documents D = {D1, D2, . . .} into
the encrypted dataset ED = {ED1, ED2, . . .}, the data owner
outsources ED to the Cloud server.

2) Hash Bucket Construction: In order to enable the Cloud
server to process LBS query over encrypted ED, the data

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

7792 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Algorithm 1: Hash Bucket Builder

Input: a private function F(x) = e(g, g)pt(2s2+x) defined by the
data owner, and an integer u ≥ 1

Output: hash buckets HBu·1000
1 for i = 0; i <= u · 1000; i++ do
2 for j = i; j <= u · 1000; j++ do
3 compute R = i2 + j2;
4 if (u− 1) · 1000 ≤ √R < u · 1000 then
5 store H(F(x)) in HBu·1000

6 else if
√

R > u · 1000 then
7 continue;

8 sort all items in HBu·1000 and remove the duplicated items
9 return HBu·1000

owner also builds and outsources a set of hash buckets to
the Cloud server. Hash buckets are used by the Cloud server
to find the spatial proximity between a query and a doc-
ument. The data owner authorizes a processing key gs−1

2 tp

to the Cloud server, and also generates and outsources a
set of hash buckets, e.g., (HB1000, HB2000, . . . ,HB10 000),
to the Cloud server. Each hash bucket HBu·1000 is gener-
ated by running Algorithm 1 with the input of u. With the
hash bucket HBi·1000, i = 1, 2, . . . , 10, it is possible for the
Cloud server to determine whether the Euclidean distance
l12 =

√
(x1 − x2)2 + (y1 − y2)2 of two points (x1, y1) and

(x2, y2) is within the range [(i−1)·1000, i·1000) while without
disclosing the accurate Euclidean distance l12. The correctness
is as follows.

If the Euclidean distance of two points (x1, y1) and (x2, y2)

is l12 = w, which is really within the range [(i− 1) · 1000, i ·
1000), from the construction of HBi·1000, the hash value
H(e(g, g)pt(2s2+w)) should be in HBi·1000. At the same time,
if we only know the value e(g, g)pt(2s2+w), due to the hard-
ness of discrete logarithm problem and without knowing the
secret keys (p, t, s2), we of course cannot get the value of w.
Therefore, the correctness is satisfied. The hash bucket tech-
nique can help the Cloud server roughly determine the current
location of a query user is within a range, but cannot know
the accurate location, thus the query user’s accurate location
can be protected.

C. Index Construction

The Cloud server builds the Pystin secure index, as shown
in Fig. 3, and our implementation is based on I3 indexing
scheme [8]. The secure index is comprised of an inverted list
of encrypted keywords. These keywords are categorized as
dense and sparse. Given a threshold λ, a keyword is dense in
a cell if it is frequency exceeds λ, else the keyword is said
to be sparse or nondense in the keyword cell. The entry in
the wordmap for a sparse keyword points directly to the page
in disk containing the tuple. However, for dense keywords,
the documents are arranged in a quad-tree, as seen in Fig. 3.
This index maintains a head file for dense keywords. For each
encrypted keyword dense in a keyword cell, a summary node
with summary information E = <E .sig,E .maxs> is created.
E .sig contains information about the documents that contain

Fig. 3. Various components of the Pystin secure index.

the encrypted keyword, and E .maxs is the upper bound textual
score for the keyword.

The signature file sig is a bitmap of length n that aggregates
all the documents containing encrypted keyword hk in cell C.
A cell can be pruned in the following cases.

1) If there is no intersection between the signatures of dif-
ferent keywords in a cell, i.e., the cell does not contain
any document that contains all the query keywords. In
such a case, the cell can be simply pruned.

2) If there is an intersection between the signatures of dif-
ferent keywords in a cell, the result is stored in sig and
an intersection of C .docs and sig is performed. In case
there is no intersection, the search space is pruned.

3) It is straightforward to calculate the spatial relevance
scores from the cell boundary points with respect to
query point using Algorithm 5. Since, the maximum spa-
tial relevance score can then be calculated by comparing
these scores, we can calculate the upper bound score of
keyword hk for cell C. If this upper bound aggregate
score is smaller than the kth-score in the top-k results,
we simply prune this cell as well.

D. End User Top-k LBS Query

With the access key AK = (s, s1, gs2 , gs2
2), an end user can

launch some top-k LBS query, i.e., PTkSKQ, to the Cloud
server. Suppose the user is located at location (x0, y0) and has
interest keywords (k01, k02, k03, . . .). Then, the following steps
will be performed by the end user for the top-k LBS query.

Step 1: The end user chooses three random numbers
r1, r2, r3 ∈ ZN , and computes

C1 = hr1 · gs2
2 gs2(x2

0+y2
0), C2 = hr2/gs2·2x0, C3 = hr3/gs2·2y0 .

Step 2: For each interest keyword k0j ∈ (k01, k02, k03, . . .),
the end user utilizes the access key s to compute hk0j =
H(k0j||s).

Step 3: After that, the end user sends the query to the Cloud
server, where the query is formed by (k, C1, C2, C3, hk01,

hk02, hk03, . . .).
Note that, upon receiving the secured top-k results from the

Cloud server, the end user can decrypt the results by using the
access key s1. In the following, we take a close look on how
the Cloud server responds the end user’s query.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7793

Algorithm 2: Query Processing [8]
Input: Secure top-k LBS query

(k, C1, C2, C3, hk01, hk02, hk03, · · ·), dataset
ED = {ED1, ED2, · · · }, Pystin secure index

Output: vector R =[< doc1, s1 >, < doc2, s2 >, · · ·] of top-k
documents sorted according to their relevance scores

1 initialize a root candidate and push it into a priority Queue PQ
2 set δ← 0, s← 0, k← 5, count← 0, C .Scoreub ← 0
3 while PQ is not empty do
4 pop the first candidate C from the PQ
5 if C .Scoreub <= δ and δ! = 0 then
6 break

7 if C .denseKwds is empty then
8 processSparse(C .docs)
9 else

10 processDense(C .denseKwds,PQ)

11 return R

Algorithm 3: ProcessSparse
Input: C .docs
Output: vector R

1 for doc ∈ C .docs do
2 Calculate the relevance score s for doc
3 if count < k then
4 insert doc into sorted vector R
5 increment count
6 if count = k then
7 δ← s

8 else
9 if s > δ then

10 δ← s
11 delete the last element in R
12 insert doc into sorted vector R

E. Cloud Server LBS Query Response

In order to efficiently process the end users’ queries, the
Cloud server first builds the secure index as shown in Fig. 3.
Then, based on the secure index and the precomputed hash-
buckets, the server ranks the candidate documents according
to their relevance scores and returns the top-k results to the
end user.

1) Query Processing: The query processing algorithm
(Algorithm 2) follows a top-down approach starting from a
root cell C. A sparse keyword can be processed as explained
in Algorithm 3. The tuples are loaded from the datafile. As
the document location is known, using Algorithm 5, the spa-
tial score for the documents can be computed. For the dense
keywords, we perform the query processing as described in
Algorithm 4.

A candidate cell is defined as

C = <C .C,C .denseKwds,C .docs,C .Scoreub>

where C .C represents cell C, the current search region, where
C .denseKwds is a list of dense keywords in cell C. C .Scoreub

is the upper bound score in the current cell. Let δ be the kth
score of the current top-k results. The result of the algorithm

Algorithm 4: ProcessDense
Input: C .denseKwds,PQ
Output: PQ

1 for child cell C′i in C .C do
2 create a new candidate C ′
3 for keyword hkij in C .denseKwds do
4 if hkij is dense in C′i then
5 insert hkij into C ′.denseKwds
6 else
7 retrieve tuples {T } in keyword cell < hkij, C′i >

8 for T ∈ {T } do
9 update C ′.docs

10 if prune(C ′=TRUE) then
11 continue

12 updateupperscore(C)
13 PQ.add(C ′)

is a vector R of top-k documents ranked according to their
relevance scores.

A priority queue PQ of candidates is maintained
(Algorithm 2) in descending order of their textual relevance
scores. Initially, a candidate for the root cell C is pushed
into PQ. Subsequently, a candidate C with the maximum
upper bound score is popped from the priority queue PQ. If
C .Scoreub <= δ, we stop the search as the rest of the candi-
dates are pruned (lines 5 and 6 in Algorithm 2). Otherwise, we
check if C .denseKwds is empty. If the current cell does not
contain any dense keywords, then all the related tuples have
been loaded from the disk and stored in C .docs. The final rel-
evance score s of these documents can be calculated directly
and δ is updated accordingly (lines 1–12 in Algorithm 3).
But, in case there exist keywords those are dense in C .C, we
zoom into the child cells and create a new candidate C ′ for
each child cell. C ′.C is set to the child cell C′i (lines 1 and
2 in Algorithm 4). For each dense keyword in C ′.denseKwds,
if it is no longer dense in the child cell C′i, we load the
related tuples from the disk and remove the keyword from
C ′.denseKwds. For each tuple T , we update EDi’s textual
relevance score to include T .s and the corresponding docu-
ment EDi is added to C .docs (lines 4 and 5 in Algorithm 4).
Otherwise, if the query keyword hkij is dense in C′i, we insert
hkij into C ′.denseKwds (lines 7–9 in Algorithm 4). After that,
as explained in Section IV-C, we see if the new candidate C ′
can be pruned. If not, its upper bound score is calculated and
updated. It is then pushed into the priority queue (lines 10–13
in Algorithm 4). The algorithm continues until all the candi-
date cells are exhausted, at which point we also have our top-k
results.

2) Calculating the Spatial Relevance Score: The Cloud
server first computes C from the secure location information
received from the data owner, i.e., C4i, and from the end user,
i.e., (C1, C2, C3), and then computes f using gs−1

2 tp provided
to it by the data owner, as described in Algorithm 5.

We know that if the document Di is within the
range, then the precomputed hashbuckets will contain the
value f . The Cloud server checks each hashbucket in

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

7794 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Algorithm 5: Rough Range Finder

Input: the processing key gs−1
2 tp,

the hashbuckets (HB1000, HB2000, · · · , HB10,000),
secure top-k LBS query (k, C1, C2, C3, hk01, hk02, hk03, · · ·),
and (xi, yi), C4i in one document EDi in Cloud
Output: distance range dr

1 compute

C = C1 · Cxi
2 · C

yi
3 · C4i

= gs2·(2s2+(x0−xi)
2+(y0−yi)

2) · hr for some random r

2 compute

f = e(C, gs−1
2 tp) = e(g, g)pt·(2s2+(x0−xi)

2+(y0−yi)
2)

for i = 1; i <= 10; i++ do
3 if H(f) ∈ HBi·1000 then
4 return dr = i /* if i = 1, dr = 1 indicates the range

[0, 1000); else if i > 1, dr = i indicates the range
[(i− 1) ∗ 1000, i ∗ 1000) */

5 return dr = −1 /*showing the range is out of 10,000 */

{HB1000, . . . ,HB10 000} for the presence of f (lines 3 and 4).
Depending upon which bucket contains f , the rough range of
the document can be known which is used to calculate the
spatial relevance score.

The Cloud server then combines the spatial and textual rel-
evance scores to calculate the total relevance scores and return
the top-k results as described in Algorithm 2.

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. Concretely, under the assumptions made before, i.e.,
the honest-but-curious model, no collusion, etc., we check
whether our scheme can achieve privacy-preserving spatial
keyword query against the Cloud server.

The Data Owner’s Documents D = {D1, D2, . . . } Are
Privacy-Preserving for Keywords in Cloud: In Pystin, before
outsourcing D = {D1, D2, . . .} to Cloud, each document
Di ∈ D will be encrypted into the following format.

For the document content EDi = Encs1(Di), without know-
ing the secret key s1, the Cloud server cannot know Di directly
from EDi. Each keyword hkij = H(kij||s) is the hash value of
kij||s, where kij is the real keyword, and s is a secret key.
Because of the oneway-ness of hash function H, the real key-
word kij will not be revealed from hkij. The Cloud server may
find the keywords by other attacks such as frequency attacks.
Note that, in order to facilitate the calculation of the textual
relevance score in (5), i.e.,

Scoretx(Di.doc, Q.doc)

=

∑

t∈Di.doc∩Q.doc
tfidf (Di.doc.t, Di.doc)tfidf (Q.doc.t, Q.doc)

√
|Di.doc|∑

t=1
tfidf (Di.doc.t, Di.doc)2

√
|Q.doc|∑

t=1
tfidf (Q.doc.t, Q.doc)2

Fig. 4. Preserving the end user’s accurate location (x0, y0) with the rough
range finder algorithm. Since H(f1), H(f2) lie in HB3000 and HB5000, respec-
tively, the Cloud server only knows l1 ∈ [2000, 3000) and l2 ∈ [4000, 5000).

it is not a good strategy to consider the indistinguishability
security on hkij, as it will make the textual relevance score
calculation very slow. Therefore, we only consider the real
keyword kij to be one-way secure in Pystin for achieving a
tradeoff between security and efficiency. Similarly, in order to
facilitate the calculation of spatial proximity in (3), Pystin does
not hide the location (xi, yi) for each document Di, because
the disclosure of (xi, yi), as we will discuss below, will not
help the Cloud server to gain the end user’s accurate location.
Therefore, the data owner’s documents D = {D1, D2, . . .} are
privacy-preserving for keywords in the Cloud.

The End User’s Query Keywords Are Privacy-Preserving,
and the End User’s Accurate Location Will Also Be Protected:
In the end user’s query (C1, C2, C3, hk01, hk02, hk03, . . .), each
keyword hk0i = H(k0i||s) is a hash value of k0i||s. As
we discussed above, each real keyword k0i can be one-way
secure. Since the end user’s location (x0, y0) is encrypted
with BGN encryption [7] into C1 = hr1 · gs2

2 gs2(x2
0+y2

0), C2 =
hr2/gs2·2x0, C3 = hr3/gs2·2y0 , without knowing the private key
in BGN encryption, the Cloud server cannot get the location
(x0, y0) from (C1, C2, C3). As the Cloud server knows each
document Di’s location (xi, yi), if the Cloud server knows
the distance l1 between the location (x0, y0) and the loca-
tion (x1, y1) of D1, and the distance between the location
l2 between the location (x0, y0) and the location (x2, y2) of
D2, the Cloud server can possibly compute (x0, y0) from
(x0 − x1)

2 + (y0 − y1)
2 = l21 and (x0 − x2)

2 + (y0 − y2)
2 = l22.

However, the Cloud server cannot get the accurate distances
l1 and l2 by using Algorithm 5.

As shown in Fig. 4, if we consider the ranges of l1 and l2
to be 1000 in Algorithm 5, the Cloud server can guess the
correct l1 and l2 both only with probability (1/106). As a
result, the Cloud server cannot know the accurate values of
the location (x0, y0), and thus the end user’s accurate location
is also protected. Obviously, there is a tradeoff between the
query accuracy and user’s accurate location privacy. Note that,
we do not protect the access pattern in this paper, as it will
lower the performance greatly.

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance, efficiency, and scalability of our proposed
Pystin scheme.

A. Experimental Setup

1) Algorithms: In order to do a fair comparison for
our proposed Pystin scheme, we choose a Baseline secure

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7795

TABLE I
APPROACHES COMPARED IN THE EXPERIMENTS

TABLE II
DATASETS USED IN THE EXPERIMENTS

approach (without an index) called Baseline, and a nonsecure
spatio-textual index I3 that has been regarded as one of the
fastest indices for TkSK queries. Note that, I3 is highly scal-
able and has been shown to be more efficient than the other
state-of-the-art solutions such as IR-tree [4]. Our implementa-
tion of Baseline is a linear scan of spatial objects in document
space. It uses the same security model as Pystin, to process pri-
vacy preserving top-k query. The details of the three algorithms
(approaches) are shown in Table I.

2) Data and Queries: For experimentation, we choose two
variations of Twitter dataset and geographic names (GNs)
dataset, which are real-world spatio-textual datasets. In spe-
cific, they were chosen to study the behavior of Pystin with
varying the size and nature of the data. A summary of the
datasets is presented in Table II. It is worth noting that
Twitter dataset is widely distributed across the whole geo-
graphic region. Since tweets are constrained by a size of
140 characters, most of the tweets have all unique words.
Therefore, we use two variations of Twitter dataset contain-
ing 200 000 and 2 million records, which were geo-tagged
by Chen et al. [14] using a real road network dataset [15].
In addition, GN dataset [16] is the United States standard for
geographic nomenclature, which is mostly confined to the U.S.
and contains highly frequent keywords.

For spatio-textual query sets, we generate queries based on
a given dataset. Each query set for a dataset consists of 100
queries. An important parameter used during the query gen-
eration is selectivity. For example, a 5% selectivity implies
that there is a 5% chance that the current query Q contains
all keywords from a known document object Di in the dataset
when, |Q.doc| ≤ |Di.doc|, or w keywords when, w = |Di.doc|
and |Q.doc| > |Di.doc|. Otherwise, there is a 95% chance
that the query location will be random and the query key-
words are selected randomly from the dictionary for that
given dataset.

3) Environmental Setup: A server with 3.00-GHz
GenuineIntel (8 core), 16-GB RAM was used to conduct all
the experiments. All index structures reside on disks. The
code for I3 was generously made available by the authors.
All indices and algorithms are implemented in Java and the
JVM heap is set to 12 GB.

Fig. 5. Index construction time.

Fig. 6. Cost of secured index construction.

B. Index Construction Performance

In this section, we present the time and storage requirements
of Pystin and how they compare against I3. As explained ear-
lier, we choose I3 as the benchmark for this set of experiments
as it is proven to be very efficient and faster than most of
the spatio-textual indices for big data available today. Since
Baseline (as in Table I) is not an index-based approach, it is
omitted from the experiments in this section.

1) Index Construction Time: Fig. 5 shows the index con-
struction time for each dataset. For the smaller dataset
TW200k, the performance of Pystin is comparable to that of
I3. For the larger datasets TW2mi and GN, Pystin takes up
to 2.6× longer than I3. This is expected, as the index con-
struction time of Pystin includes the cost of security related
operations. Su et al. [17] also noted the same in terms of the
index construction time of their secure index and the spatio-
textual index IR-tree. On comparing index construction time
of TW2mi and GN dataset, TW2mi takes more time to con-
struct the index as the number of unique keywords are more
in TW2mi dataset.

2) Cost of Security Operations: The index construction
time for Pystin shown in Fig. 6 includes the encryption time.
We can see that the encryption cost is approximately around
30% of the total index construction time. The cost of index
construction depends on the size of the data, i.e., the number
of objects in the dataset and the length of the keywords. Since
Pystin encrypts all the data and query keywords to a fixed size
code, index construction time depends solely on the number
of objects in the data space.

3) Storage Cost: In Fig. 7, we report the sizes of the dif-
ferent indices along with the data-file size. Index size greatly

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

7796 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 7. Storage cost.

TABLE III
PARAMETER SETTINGS

varies with the number of objects which is evident from the
huge difference in the index sizes of TW200k and TW2mi.
Given the fact that the index is stored in Cloud, the size of
the index is not a concern.

C. Query Performance Comparison

We evaluate and report the query performance of the
three approaches Pystin, I3, and Baseline in this section.
Experiments are performed under different parameter settings
as described in Table III on the three datasets TW200k,
TW2mi, and GN to evaluate the efficiency of the approaches.

In general, of the three algorithms that were evaluated, the
query performance of Pystin was significantly better than that
of the Baseline, and was worse than that of I3. This trend is
observed with all the three datasets, as shown in Fig. 8(a)–(c).
This is completely in line with our expectation, as Pystin index
does much better than the secure approach Baseline because
it does not use an index. Also, Pystin’s query performance is
worse than that of I3 index, because I3 is not a secure index
and hence does not pay for the cost of security operations.

1) Varying k in Top k: In Fig. 8, we examine the query
performance while varying k as 1, 2, 3, 4, and 5. In all the
three approaches, the same ranking function calculates the total
score for all the objects in the document space. Hence, varying
k does not have an impact on the query performance in our
experiments.

2) Varying Selectivity: We experimented with different val-
ues of selectivity in the query sets, such as 5%, 10%, 20%,
and 30%. Fig. 9 presents the query performance in the three
approaches. We can see that I3 and Pystin are both sensitive to
the change in selectivity. As the value of selectivity increases,
there are more queries for which the spatial objects are scanned
and the score is calculated. However, this increase in the cost
of query processing is not significant for I3. For Pystin, though
the cost increases up to 2.16× when selectivity increases from

5% to 30%, it is not very significant in terms of the overall
query performance over Baseline as seen in Fig. 9. It can be
observed that Pystin takes a higher amount of time for query
processing compared to I3. This is due to the fact that Pystin
involves use of BGN encryption in the Cloud to calculate the
spatial relevancy score. However, it is also noticeable that the
query performance time remains under 1 s for Pystin. Our
scheme is 100 times faster than the Baseline algorithm for all
the three datasets.

3) Varying α: Recall, α is a weight to specify the impor-
tance of spatial and textual relevance scores in the overall score
in (3). For the Twitter datasets where the average number of
keywords in a spatial object is relatively low (as shown in
Table II), α does not have an impact on the query performance.
The average number of keywords per spatial object in slightly
more in the GN dataset compared to the Twitter datasets,
but not significantly larger. In Fig. 10, we report that the
query performance remains unaffected by the value of α in
our experiments.

D. Scalability of Pystin

In this section, we further evaluate the scalability of our
proposed Pystin scheme.

1) Varying Query Radius: As mentioned earlier, Pystin uses
bucketization to find whether or not an object is in the range.
The cost of creating hashbuckets is quadratic to the maximum
radius. However, this is a one-time cost incurred in the prepro-
cessing step and it does not contribute to the query processing
cost. The query processing times while varying the radius from
5 to 100 km, are shown in Fig. 11. As the increase in radius
does not require any additional computation and the fact that
Pystin calculates the score for all the objects in the docu-
ment space, there is no additional cost of query processing
associated with the increase in the radius, which makes Pystin
scalable. The difference in query execution times are primarily
due to the variation in dataset sizes.

2) Effect of Increase in Number of Objects: Figs. 8–10
show the results of varying the size of the datasets. These
experiments confirm that Pystin is scalable with respect to the
dataset size. Increasing the number of spatial objects leads to
an increase in number of nodes in the Quadtrees of Pystin.
However, this contributes only to a sublinear increase in the
query processing time.

3) Effect of Keyword Length: Our experimental evaluation
has demonstrated that the performance of Pystin is signifi-
cantly better than a privacy-preserving Baseline approach (i.e.,
Baseline) that does not use an index. Pystin encrypts all the
query keywords and dataset to fixed length codes. Therefore,
an increase in the keyword length does not have any effect on
the query performance.

VII. RELATED WORK

In this section, we discuss some related works, includ-
ing spatial–textual index, secure spatial query, secure textual
query, and secure spatio-textual query.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7797

(a) (b) (c)

Fig. 8. Query performance with different datasets: vary k. (a) TW200k. (b) TW2m. (c) GN.

(a) (b) (c)

Fig. 9. Query performance with different datasets: vary selectivity. (a) TW200k. (b) TW2m. (c) GN.

(a) (b) (c)

Fig. 10. Query performance with different datasets: vary α. (a) TW200k. (b) TW2m. (c) GN.

A. Spatio-Textual Index

Spatio-textual index is one hybrid indexing, which com-
bines the textual and the spatial indices. Currently, inverted
files and R-trees are commonly chosen as the textual and spa-
tial indices, respectively. Cong et al. [4] proposed IR-tree,
which augments each node of R-tree with a bitmap signa-
ture file that represents the textual information in the child
nodes. Rocha-Junior et al. [18] proposed an index structure,
called S2I, which uses a variation of R-tree called aggre-
gate R-tree or a R-tree to map each frequent keyword to a
tree. Zhang et al. [8] proposed I3 technique, which combines
the inverted files and quad-tree. I3 stores the information in
the hierarchy of keyword cells. In addition, it also stores the
summary information of each keyword cell for efficient prun-
ing, which can improve the efficiency and scalability of the
index. These index structures are aimed at top-k spatial key-
word search, but they do not support privacy-preserving query
processing. Our index, Pystin, supports privacy-preserving
spatio-textual queries and utilizes I3 as a basis to provide
secure query processing over the Cloud.

B. Secure Spatial Query

In a Cloud-based model, it is imperative to have a mech-
anism for blind processing as the Cloud is semi-trusted
and honest-but-curious. Gruteser and Grunwald [19] first
addressed secure spatial query by introducing the loca-
tion k-anonymity model, in which an adversary could not
identify the user location with a probability of 1/k. In
another effort, Gedik and Liu [20] introduced the concept
of trusted third party (TTP) to achieve location cloak-
ing. Khoshgozaran and Shahabi [21] proposed a TTP-based
scheme to convert the spatial information of the object and
query in a space to a different space. The TTP is responsi-
ble for maintaining the relation between the two spaces for
accuracy. In a similar attempt, [22] proposed location cloak-
ing using TTP. User location is transformed into an area with
at least k−1 users. The concept of dummy locations is applied
by Kido et al. [23] where a user hides her location by introduc-
ing many random points in her query. However, the TTP-based
schemes, such as [21] and [22], suffer from the fact that TTP
houses the sensitive information, which is a huge security risk.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

7798 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 5, OCTOBER 2019

Fig. 11. Query performance of Pystin: vary radius.

Moreover, these schemes focus on location privacy only and
are not a best fit for spatio-textual queries on big data that
leverage textual relevance greatly. To address the issues in
big data query, an efficient mechanism to access, store and
manage data is required. For this reason, Hu et al. [6] used
R-tree-based index. Their approach, called ASM-PH, imple-
ments privacy homomorphism to map operations on plaintext
to operations on ciphertext and provides a method to sup-
port secure spatial queries on Cloud. In another approach,
Yiu et al. [5] proposed an index traversal technique based on
location transformation by using AES. This approach supports
the range queries without errors over the transformed location
space. Elmehdwi et al. [24] used the Paillier cryptosystem to
secure query information. However, these schemes are limited
by their applications to location privacy only. On the other
hand, our approach achieves both location and textual privacy
and confidentiality.

C. Secure Textual Query

For secure textual query, searchable encryption (SE) is cen-
tral to the idea of secure query processing. Curtmola et al. [25]
gave the formal definition of SE. In this context, the Cloud
servers can offer either Boolean or ranked search approaches
to process user provided encrypted queries [26]. Furthermore,
each of these two approaches could either support single
or multikeyword search. A single keyword Boolean search
returns documents that contain the given keyword. Boolean
operators, such as AND and OR can be used in the case of
multikeyword search. Boolean searches look for exact match
and do not use a ranking method. Ranked search techniques
are able to return documents that are ordered based on a
relevance score in relation to the keyword (or keywords) in
the user queries. The relevance score can be calculated by
extending the searchable index to utilize a keyword rank-
ing functions, such as TF-IDF [10], cosine similarity, or the
language model [27].

Inverted list is a popular technique for searching textual
data. Curtmola et al. [25] proposed a textual index based on
the inverted list. Wang et al. [28] addressed the problem of
order preserving encryption to rank the objects in a textual

index. Boneh and Waters [29] proposed for the first time asym-
metric encryption-based SE. In another work [30], moving
from single keyword search to multikeyword search, Cao et al.
employed symmetric encryption for multiword ranked search
scheme. Sun et al. [31] proposed an efficient ranked privacy
preserving keyword search using cosine similarity. However,
these schemes secure the textual queries only and fail to secure
a spatio-textual query. In contrast, our index is able to secure
spatio-textual queries.

D. Secure Spatio-Textual Query

Su et al. [17] proposed an IR-tree-based [4] index scheme,
called PkSKQ, which is focused on privacy preserving top-
k query processing over the Cloud. Specifically, the scheme
combines the spatial and textual information into a single vec-
tor to provide a unifying approach. The vector is then secured
against the chosen-plaintext and known-plaintext attacks by
using ASPEN encryption. To search with the secure index,
PkSKQ employs two techniques: 1) anchor-based position
determination and 2) position distinguished trap door genera-
tion, which allows for the similarity computations between the
query and the documents without divulging any information.

Different from the above, our proposed Pystin scheme is
based on I3 index, which is significantly faster than IR-
tree, as was demonstrated in [8]. Pystin maintains summary
information for efficient secure pruning, where space is pruned
based on the relevance score as well as the signature file.
Pystin supports Ranked multikeyword search over encrypted
spatio-textual data, and achieves most security requirements
identified in [26]. We have demonstrated the efficiency and
scalability of Pystin through extensive experimentation.

VIII. CONCLUSION

In this paper, we have proposed a new privacy-preserving
top-k spatio-textual query scheme, called Pystin, to enable
secure LBS in smart cities. The prposed Pystin is performed
over outsourced Cloud, which combines BGN homomorphic
encryption and hash bucket techniques to allow a registered
query user to obtain PTkSK query results, without divulging
the accurate location information. In addition, the privacy of
textual information is also persevered by a one-way hash
function. In order to further reduce the query latency, an effi-
cient quad-tree-based spatio-textual indexing is integrated into
Pystin. Detailed security analyzes show that Pystin is indeed a
PTkSK query scheme. Furthermore, extensive experiments are
conducted to confirm the scalability, efficiency properties of
Pystin. In future work, we will exploit security and efficiency
issues of other LBS queries in smart cities.

REFERENCES

[1] (2017). Stats. [Online]. Available: https://newsroom.fb.com/company-
info/

[2] (2017). Twitter Users. [Online]. Available: https://www.statista.com/
statistics/282087/number-of-monthly-active-twitter-users/

[3] M. Barbard and T. Zeller, A Face Is Exposed for AOL Searcher
No. 4417749, New York Times, New York, NY, USA, Aug. 2006.

[4] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-K
most relevant spatial Web objects,” Proc. VLDB Endow., vol. 2, no. 1,
pp. 337–348, Aug. 2009.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

NEGI et al.: PYSTIN: ENABLING SECURE LBS IN SMART CITIES WITH PRIVACY-PRESERVING TOP-k SPATIAL–TEXTUAL QUERY 7799

[5] M. L. Yiu, G. Ghinita, C. S. Jensen, and P. Kalnis, “Outsourcing search
services on private spatial data,” in Proc. ICDE, 2009, pp. 1140–1143.

[6] H. Hu, J. Xu, C. Ren, and B. Choi, “Processing private queries over
untrusted data cloud through privacy homomorphism,” in Proc. ICDE,
2011, pp. 601–612.

[7] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Proc. TCC, 2005, pp. 325–341.

[8] D. Zhang, K.-L. Tan, and A. K. H. Tung, “Scalable top-K spatial
keyword search,” in Proc. EDBT, 2013, pp. 359–370.

[9] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval
on composite keys,” Acta Informatica, vol. 4, no. 1, pp. 1–9, 1974.

[10] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp. 513–523, 1988.

[11] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

[12] (2018). TF-IDF. [Online]. Available: https://en.wikipedia.org/wiki/Tf-idf
[13] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1997.
[14] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query pro-

cessing: An experimental evaluation,” Proc. VLDB Endowment, vol. 6,
no. 3, pp. 217–228, 2013.

[15] (2018). DIMACS Implementation Challenge—Challenge Benchmarks.
[Online]. Available: http://www.dis.uniroma1.it/challenge9/download.
shtml

[16] (2018). United States Board on Geographic Names. [Online]. Available:
https://geonames.usgs.gov/domestic/download_data.htm

[17] S. Su et al., “Privacy-preserving top-K spatial keyword queries in
untrusted cloud environments,” IEEE Trans. Services Comput., vol. 11,
no. 5, pp. 796–809, Sep./Oct. 2015.

[18] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient
processing of top-K spatial keyword queries,” in Proc. Int. Symp. Spat.
Temporal Databases, 2011, pp. 205–222.

[19] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proc. ACM 1st Int.
Conf. Mobile Syst. Appl. Services, 2003, pp. 31–42.

[20] B. Gedik and L. Liu, “Location privacy in mobile systems: A personal-
ized anonymization model,” in Proc. ICDCS, 2005, pp. 620–629.

[21] A. Khoshgozaran and C. Shahabi, “Blind evaluation of nearest neighbor
queries using space transformation to preserve location privacy,” in Proc.
SSTD, 2007, pp. 239–257.

[22] C.-Y. Chow, M. F. Mokbel, and W. G. Aref, “Casper*: Query process-
ing for location services without compromising privacy,” ACM Trans.
Database Syst., vol. 34, no. 4, p. 24, 2009.

[23] H. Kido, Y. Yanagisawa, and T. Satoh, “Protection of location privacy
using dummies for location-based services,” in Proc. ICDE Workshops,
2005, p. 1248.

[24] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neigh-
bor query over encrypted data in outsourced environments,” in Proc.
ICDE, 2014, pp. 664–675.

[25] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,” J.
Comput. Security, vol. 19, no. 5, pp. 895–934, 2011.

[26] D. V. N. S. Kumar and P. S. Thilagam, “Approaches and challenges
of privacy preserving search over encrypted data,” Inf. Syst., vol. 81,
pp. 63–81, Mar. 2018.

[27] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” in Proc. SIGIR, 1998, pp. 275–281.

[28] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Proc. ICDCS, 2010, pp. 253–262.

[29] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proc. TCC, Amsterdam, The Netherlands, 2007,
pp. 535–554.

[30] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[31] W. Sun et al., “Privacy-preserving multi-keyword text search in the cloud
supporting similarity-based ranking,” in Proc. ACM SIGSAC, 2013,
pp. 71–82.

Divya Negi received the master’s degree in com-
puter science from the Faculty of Computer Science,
University of New Brunswick, Fredericton, NB,
Canada.

After graduating from the University of New
Brunswick, she joined Morgan Stanley Canada
Limited, Montreal, QC, Canada, as a Software
Engineer. Her current research interests include big
data systems, query processing and security, and
privacy issues in big data.

Suprio Ray (M’17) received the Ph.D. degree from
the Department of Computer Science, University of
Toronto, Toronto, ON, Canada.

He is an Assistant Professor with the Faculty of
Computer Science, University of New Brunswick,
Fredericton, NB, Canada. His current research
interests include big data and database management
systems, run-time systems for scalable data science,
provenance and privacy issues in big data, and data
management for the Internet of Things.

Rongxing Lu (S’09–M’10–SM’15) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada.

He has been an Assistant Professor with the
Faculty of Computer Science, University of New
Brunswick, NB, Canada, since 2016. He was an
Assistant Professor with the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore, from 2013 to 2016. His cur-
rent research interests include applied cryptography,

privacy enhancing technologies, and Internet of Things big data security and
privacy.

Dr. Lu was a recipient of the Governor Generals Gold Medal and the
IEEE Communications Society (ComSoc) Asia–Pacific Outstanding Young
Researcher Award. He currently serves as the Secretary of the IEEE
ComSocCIS-TC.

Authorized licensed use limited to: University of New Brunswick. Downloaded on March 02,2020 at 14:29:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

